Introdução
Foto cedida NASA Um aparelho de ressonância |
Foram necessárias quase cinco horas para produzir uma imagem. E se compararmos com os padrões atuais, as imagens eram bem feias. Dr. Raymond Damadian, médico e cientista, e seus colegas Dr. Larry Minkoff e Dr. Michael Goldsmith trabalharam durante sete longos anos para chegar a esse ponto. Eles chamaram a primeira máquina de "Indomável", numa forma de captar o espírito de sua luta para fazer o que todos diziam ser impossível.
Agora, essa máquina se encontra na Smithsonian Institution (Instituto Smithsonian). Até 1982, havia poucos aparelhos de ressonância magnética nos EUA. Hoje, há milhares. Hoje podemos gerar em segundos as mesmas imagens que levavam horas antigamente.
A tecnologia deste exame é bastante complicada e nem todos a compreendem bem. Neste artigo, você vai aprender como funciona uma dessas grandes e barulhentas máquinas de ressonância magnética. O que acontece com o seu corpo enquanto você está na máquina? O que você pode ver com ela e por que tem de ficar tão imóvel durante o exame? Você vai encontrar as respostas para essas e muitas outras perguntas aqui - não perca tempo!
O conceito básico
Se você já viu um aparelho de ressonância magnética, deve saber que o design básico da maioria deles é quase um cubo gigante. O cubo de um aparelho comum deve ter 2 m de altura x 2 m de largura x 3 m de comprimento, embora os modelos mais novos estejam ficando cada vez menores. Há um tubo horizontal que atravessa o magneto (ímã) da parte dianteira até a traseira. Esse tubo é uma espécie de vão do magneto. O paciente, deitado de costas, desliza para dentro do vão por meio de uma mesa especial. O que vai determinar se o paciente vai entrar primeiro com a cabeça ou com os pés, ou até onde o magneto irá, é o tipo de exame que será realizado. Embora os aparelhos venham em tamanhos e formatos diferentes, e os novos modelos possam ter uma certa abertura nas laterais, o design básico é o mesmo. Assim que a parte do corpo que deve ser examinada atinge o centro exato ou isocentro do campo magnético, o exame começa.
Em conjunto com os pulsos de energia das ondas de rádio, o aparelho pode selecionar um ponto bem pequeno dentro do corpo do paciente e perguntar a ele, "Que tipo de tecido você é?" O ponto pode ser um cubo com lados de meio milímetro. O aparelho de ressonância percorre cada ponto do corpo do paciente, construindo um mapa em 2-D ou 3-D dos tipos de tecido. Então, ele junta todas essas informações para criar imagens em 2-D ou modelos em 3-D.
Mas a verdade é que esse exame fornece uma visão sem igual do interior do corpo humano. O nível de detalhes que podemos ver é extraordinário quando comparado com qualquer outro tipo de exame de imagens. A ressonância magnética é o método preferido para o diagnóstico de muitos tipos de traumas e doenças devido à sua incrível capacidade de personalizar o exame de acordo com o problema médico específico. Ao modificar os parâmetros dos exames, o aparelho de ressonância pode fazer com que tecidos do corpo apareçam de maneiras diferentes. E isso é muito útil para que o radiologista (que lê o exame) determine se algo visto é normal ou não. Se sabemos que ao fazer "A", o tecido normal terá a aparência "B", e se isso não acontecer, pode haver alguma anomalia. Os sistemas de ressonância magnética também podem fazer imagens do sangue circulando em praticamente qualquer parte do corpo. Isto nos permite realizar estudos que mostram o sistema arterial do corpo sem mostrar o tecido ao seu redor. E o que é mais impressionante, em muitos casos, o aparelho consegue fazer isto sem injeção de contraste, que é necessária na radiologia vascular.
Intensidade magnética
Foto cedida NASA Nesse exame, dá para ver claramente os pedaços estilhaçados de um pulso humano após uma queda. |
Números assim ajudam a compreender racionalmente a força magnética, mas os exemplos diários também são úteis. O local do aparelho de tomografia por ressonância magnética pode ser um lugar perigoso se não tomarmos precauções muito severas. Objetos de metal podem se tornar projéteis perigosos se forem levados à sala de exames. Por exemplo, clipes de papel, canetas, chaves, tesouras, hemostatos, estetoscópios e quaisquer outros objetos pequenos podem ser puxados de bolsos e do corpo de repente, voando para a abertura do magneto (onde o paciente fica) a velocidades muito altas e ameaçando qualquer um que esteja na sala. Além disso, cartões de crédito, cartões de banco e qualquer outra coisa com tarjas magnéticas terão seus dados apagados pela maioria dos sistemas de ressonância magnética.
A força magnética exercida sobre um objeto aumenta exponencialmente conforme ele se aproxima do ímã. Imagine ficar a 4,6 metros de distância do magneto com um chave inglesa grande na sua mão. Você pode sentir só um puxãozinho. Aí, você se aproxima uns dois passos e o puxão fica muito maior. Quando chegar a uma distância de 1 metro do magneto, a chave provavelmente vai ser puxada da sua mão. Quanto mais massa um objeto tiver, mais perigoso ele pode ser, já que a força com a qual ele é atraído será muito maior. Baldes, aspiradores de pó, tanques de oxigênio, macas, monitores cardíacos e vários outros objetos já foram puxados para dentro dos campos magnéticos de aparelhos de ressonância magnética. Dos casos que fiquei sabendo, o maior objeto a ser puxado foi uma pequena empilhadeira totalmente carregada (veja abaixo). Os objetos menores não são difíceis de tirar do magneto - basta usar a mão. Já os maiores podem precisar de uma alavanca ou talvez seja necessário desligar o campo magnético.
Verificação de segurança
Antes que um paciente ou membro da equipe entre na sala onde está o equipamento, ele passa por uma verificação completa em busca de objetos de metal. Até esse ponto, nós só falamos sobre os objetos externos. Mas muitas vezes, pacientes têm implantes que fazem com que seja muito perigoso ficar na presença de um campo magnético forte.
Fragmentos metálicos no olho são muito perigosos porque um movimento desses fragmentos poderia causar danos ao olho ou até mesmo cegueira. Seus olhos não cicatrizam como o resto do seu corpo. Um fragmento de metal no seu olho que já está lá há 25 anos é tão perigoso hoje como era antes, porque não há tecido de cicatrização para mantê-lo no lugar. E pessoas com marca-passos não podem usar esse aparelho ou mesmo chegar perto dele, pois o magneto pode impedir o funcionamento correto do dispositivo cardíaco.
O magneto também pode mover os clipes de aneurisma colocados no cérebro, fazendo com que eles rasguem a artéria em que foram colocados. E também há implantes dentários que são magnéticos. Já a maior parte dos implantes ortopédicos, mesmo que sejam ferromagnéticos, não causam problemas por serem encravados no osso. Mesmo os grampos de metal na maioria das partes do corpo não apresentam problema nenhum, já que após ficarem em um paciente por algumas semanas (normalmente seis semanas), os tecidos de cicatrização se formam para mantê-los no lugar.
Pacientes com implantes ou objetos metálicos dentro do corpo são analisados para ter certeza de que a tomografia é segura para eles. Alguns pacientes não podem utilizar o equipamento de tomografia porque os riscos são grandes demais. Quando isso acontece, sempre há um método de exame alternativo que pode ajudá-los.
Essas imagens comparam um indivíduo jovem (esquerda) com um homem atlético com cerca de 80 anos (centro) e uma pessoa da mesma idade com mal de Alzheimer (direita), todas feitas no mesmo nível |
Não há riscos biológicos conhecidos para quem é exposto a campos magnéticos utilizados na medicina hoje em dia. Mas a maior parte das clínicas e hospitais prefere não fazer exames em mulheres grávidas. Isto se deve ao fato de que não foram feitas muitas pesquisas sobre os efeitos biológicos em fetos em desenvolvimento. O primeiro trimestre de uma gravidez é o mais crítico por ser o momento em que a reprodução e divisão celular ocorrem com maior rapidez. Mas a decisão de fazer ou não fazer o exame em mulheres grávidas é tomada em cada caso com uma conversa entre o radiologista e o obstetra da paciente. O benefício de realizar o exame deve ser maior do que o risco para a mãe e para o feto, por menor que ele seja. Mas as técnicas que estão grávidas e trabalham com aparelhos de ressonância magnética podem continuar a trabalhar quase que normalmente. A única diferença na maioria dos casos é que elas simplesmente ficam fora da sala de exame durante a gravidez.
Uma pequena empilhadeira carregada que foi atraída para o vão de um aparelho de ressonância magnética |
Os magnetos
Foto cedida NASA Essa imagem mostra o crescimento do tumor em um cérebro feminino, cortado aqui em vista lateral |
- Os magnetos resistivos consistem em muitas voltas de fios enrolados ao redor de um cilindro por onde passa uma corrente elétrica. Isso gera um campo magnético. Se a eletricidade for desligada, o campo magnético também se desliga. Esses magnetos são mais baratos de construir do que um supercondutor (veja abaixo), mas requerem grandes quantidades de eletricidade (até 50 quilowatts) para operar devido à resistência natural no fio. Para fazer esse tipo de magneto operar acima do nível de 0,3 tesla seria extremamente caro.
- Já um magneto permanente é o que o nome diz: permanente. Seu campo magnético sempre está presente e com força total, o que significa que não se gasta nada para manter o campo. A principal desvantagem é que são pesados demais: pesam muitas toneladas no nível de 0,4 tesla. Um campo mais forte precisaria de um magneto tão pesado que seria difícil construí-lo. E embora esse tipo de magneto esteja ficando cada vez menor, ainda está limitado a campos com pouca intensidade.
- Os magnetos supercondutores são os mais utilizados. Um magneto supercondutor é um pouco semelhante a um magneto resistivo: ele é feito de enrolamentos de fios pelos quais passa uma corrente elétrica que cria o campo magnético. A diferença importante é que o fio é continuamente banhado em hélio líquido a uma temperatura de -233,5° C. Sim, quando você fica dentro de um aparelho de ressonância magnética, fica rodeado por uma substância fria! Mas não se preocupe, ele é muito bem isolado por um vácuo, assim como o utilizado em uma garrafa térmica. Esse frio quase inimaginável faz com que a resistência no fio caia a zero, reduzindo dramaticamente a necessidade elétrica do sistema e tornando muito mais econômica sua operação. Os sistemas supercondutores ainda são muito caros, mas podem facilmente gerar campos que vão de 0,5 tesla a 2,0 tesla, gerando imagens de qualidade muito melhor.